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SUMMARY

We have studied the problem of calculating Green’s functions in three dimensional hydrodynamic gravity
wave problems. A number of new expressions for these functions are presented for both finite and infinite
depths. Various techniques for accelerating the convergence of some infinite series in these expressions are
investigated and compared with the normal methods of evaluation. A significant improvement in the
efficiency of the calculation is found using the results described in this paper.
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1. INTRODUCTION

The problem of describing the motion of a body in the sea can be formulated in the language of
potential theory. If we consider the sea to be an incompressible inviscid fluid with a free surface, the
resulting problem involves the solution of Laplace’s equation subject to various body, sea floor and
free surface boundary conditions. For most geometries it appears impossible to solve these
equations analytically, and numerical methods must be used. One technique which has become
popular recently is the boundary element method. It has been described extensively by other
authors! ™3 so we will not give details but just outline the essential features.

By the use of Green’s third identity it can be shown that the potential defining the motion can be
reproduced by a distribution of simple sources over the submerged surface of the body. The
strengths of the sources can then be found by imposing the body boundary conditions and are
given as the solution of a singular integral equation over the submerged body surface. The
approximations are then made of (i) taking the submerged surface of the body to consist of a
number (1) of simply shaped regions or facets and (ii) assuming that the source strength function
has a simple form on each facet. This reduces the integral equation to a system of linear equations,
the coefficients of which involve the Green’s function for the problem evaluated at a number (m) of
points on each facet.

As more and more facets are introduced to improve the accuracy of the calculation, the number
of Green’s functions which need to be determined grows rapidly ( ~ m?»n?) and it is found that this
calculation takes an increasingly large proportion of the computing time. Some care is clearly
needed in the practical evaluation of these functions in order that the investigation of more
complex bodies is not prohibited by the time needed for their calculation.

For a fluid of finite depth, d, the Green’s function which satisfies the linearized free surface, fluid
bottom and radiation boundary conditions is given by Wehausen and Laitone® in the form of
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principal valued integrals or as infinite sums. Suppose (x, y,z), (&, 1, () are the Cartesian co-
ordinates of two points in the fluid where the origin of co-ordinates is taken on the free surface with
the positive z direction pointing vertically upwards. If the waves on the free surface have frequency
o then
(i) Infinite depth:
Gx, v,z & z)=l+Pr9—‘iﬂe-uﬂJ (ur)dp (1)
3 e~y s s R o (ﬂ “ \’) 0 ]

where

p=lz+Cl,

rP=x—8*+@—n?

R?=r’+(z -0,

v=w?/g.
(i) Finite depth:
1 1 ® .
G358 O = + 7+ P f F(0)Jofpr)dp+ A ofkr), @
0
where
R?=(z+{+2d)* + 12,
(u + v)e "2 cosh u(z + d) cosh u({ + d)
F(M) = —2ud )
(=) —(u+vje
A 2n(k? — v2ycosh k{z + d) cosh k{{ + d)
h (k2 —v3)d +v ’
v=ktanh kd.
Alternatively
G(x,p,2,En,0) =4 ), a, K, + A[iJo(kr) — Yo(kr)], Q)
m= 1
where
(2 +v?)cos p,,(z + d) cos p,({ +d)
" (um +v)d—v ’
Km = KO(Mmr)
and

—V =y tan fd; Wiy > >0, m=12,...

We will refer to (2) as the integral form and (3) as the series form.

The integral forms (1) and (2) are often rather disappointing from a computational point of
view.*>7 This is mainly due to the singularity and oscillations in the integrand which makes it
necessary to take quite a large number of points in the quadrature formulae used in the estimation
of the integral. The evaluation thus becomes relatively rather slow— typically several times slower
than the use of the series form—but the use of this form is apparently unavoidable for r = 0. Some
approximate technique which avoids these problems would clearly be most useful.

The infinite depth case (1) has, consequently, been studied by a number of authors, and our
equation (4) in Section 2 has been derived in various ways by Kim,® Hearn,” Noblesse'® and
Newman.*! Newman®? has also given an interesting series expansion of (4) which is valid for any
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values of r and B. Noblesse!® has considered the infinite depth case at length and has derived a
number of different finite integral, series and asymptotic expansions. These expressions prove to be
useful for different parameter ranges (often for ‘small’ r, f) but they could also provide clues to new
ways of writing the Green’s function in the finite depth case. Here, relatively little work seems to
have been done, although Daubisse'?® has reported some successful numerical calculations in
which the integrand of (2) is approximated by a simple pole plus an exponential series.

In many cases the use of the series form (3) represents a very efficient method for calculating the
Green'’s function. Since u,,— o0 as m— oo, we find that a,, —cos u,,(z + d) cos p,,({ + d)/d and
hence the number of terms of the series which need to be calculated in order to achieve any given
accuracy in (3) depends only on the decay of the modified Bessel function K4(u,,r). It can be shown
that as m— oo, u,,— uf =mn/d, so that if we regard Ky(x) as negligible for x > X, we need to
calculate m, terms, where m,, = Xd/nr. For many values of (r/d), m, is quite acceptable to modern
computers, but if (r/d) is small, m, can become rather large. It would therefore be useful to find an
expression for the infinite sum which converges more quickly for small (r/d).

The results which we wish to present in this paper are organized as follows. In Section 2 we will
give an improved integral form of the Green’s function for infinite depth. In Section 3 we give a
modification of the series form for r > 0 which converges more rapidly than (3) and in Section 4 we
will derive three new expressions for the Green’s function when r = 0 in the form of infinite series.
Section 5 contains some discussion of the further acceleration of the series forms, and Section 6
gives the results of some calculations using the various forms of the Green’s function.

2. THE INTEGRAL FORM—INFINITE DEPTH

Let
I,(v,B,7)= Pfj %—E% e Mo (ur)dp
- J : &8 T our)dp + 20M ™ (B, 1)
_ ”\77%7?—"7 +20M(B,1)
where

@© ~up
M*(B,r)= Pfo i‘__’g}j Jolur)dp.

It is easy to show that

-

5]

M 1
B - JE+ )

and hence that, if r >0

B e$vx
* Y + — _
M=, r)=¢ (M 0,7 J‘O\/(xz+r2)dx>,
where
" Iolwn) g

Mi(O,r)::Pf
o HEV
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p-plane [

Figure 1. The contour used in the evaluation of M*(0,r) in Section 2

In order to evaluate M*(0,r) we consider
L[ HYE)
2m Jo z+v

where C is the contour shown in Figure 1 and R, - c0.
It can be seen that

2v [ ® Ko(rt)
M*(0.1) = = n¥o(wle* + = J g

where
et =0, ¢ =1
and, hence, from Reference 14 that

M*(0,1)= £ [Ho(m) F Yolor)],

where H,(vr) is the Struve function of order zero.
Gathering these results we find that for r >0

1 i VX
1,0 p 1) = NCETN 2ve P { J ) 7&-‘;:;-2-) dx + g[Ho(vr) ¥ Y,0m)] } @)

When r =0 it is easy to see that M*(8,0) = + e*"*Ei(F vf) and hence that
1
I.(v,B,0)= 5 2ve "YPEi(vp).

It should be noted that the integrals in these formulae involve neither a singular integrand
nor a Bessel function and that they may usually be estimated extremely accurately and rapidly
by the use of standard quadrature formulae with only a few points.

It is of interest to examine some special cases of (4). First, as v— 0 we find that

1 1

CCRT TRy

©)



CALCULATION OF GREEN’S FUNCTIONS 895

Next, as v— 0
1 1 g ev
Go—t g — 26" | e d
R Jr*+pH) Jo\/(xz-krz) X
and, using an extension of the Laplace method for evaluating asymptotic expansions of integrals
> we find that as v— o
1 1
Go— s,
TRTOJE B ©
Both the forms (5) and (6) agree with the asymptotic results given by Garrison and Berklite
Finally, we consider the case where 7, § — 0. That is, we consider the behaviour of the Green’s

function near a point source on the free surface. Then

1 i P dx
g g () )

G—-—+
R J*+p%)
where y is Euler’s constant, i.e.

G-»%-’Zve‘””(log{;—[ﬂnL\/(ﬂz + rz)]}+ y).

Thus, for points on the free surface, the Green’s function has a double (1/R)-type singularity and
an additional logarithmic singularity. This result agrees with the observations of Newman.!?

which is given by Erdélyi,*

3. FINITE DEPTH, r>0

One of the techniques which is sometimes employed to accelerate the convergence of an infinite
series is to use the known closed form sum of a closely related series. Rather surprisingly this

approach can be used in the case of (3). As m— o

ame—»écos uiz + dycos pX(l + Koukry=atK¥

and Zm (anK}, can be expressed in terms of elementary functions using a result given in

Referenc:e 17,
1 1 )

°° T & 1
3., cosmxtKomx)=3 ), <\/[x -] Y+t In

z (7

1 I X
V&) | T aga oy

Applying this result we find, after some manipulation, that

m

& 2 11
G=4Y (a,K,—a}iK¥) + A[iJo(kr) — Yo(kr) ]+ = [y + log(4d>] + R + = r +Zs.  (8)

ZG:Z bl++bl_+Cl++Cl—’“'““ b
=1 Id

F={r+Rd+z-01} 713
cf={r*+2d+(Ez+{+2d)]*} V2

where
i)
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It can be shown that for large m
v
ame - a,",‘,K,"; ~ wa:':xK::n
mn

so that this procedure should lead to a significant improvement in the convergence rate. We
will discuss this point further in Section 5. The convergence of X, can also be considerably
improved by noting that for [ > 3

_ 2 &,
bl++bl +cl++cl _l_d-Nn:3 l"’
where {4,} are constants. The known values of Z{‘i 1/I" for n> 3, can then be used to great

advantage.
This result can also be derived by modifying the method used by John.*® He noted that we can

write

G= PJ p(Jo(ur)du  (z>0), ©
o
where
(1 cosh pz + v sinh pz)
=2 cosh d .
Pl =2cosh u(C+d) ra e T cosh )
If we write
p() = [p(p) — ()1 + q(w),
where
2
q(u) = s(p) ——
ud
and
2 cosh u({ + d)cosh uz
S(1) = u('C ) W
sinh ud

then we find that

G=P J . P(u)J o(urydp + J . q(u)Jo(ur)dp,
where

2
P(u) = S(u) + i
jz

and
_ 2vcosh p(z + d) cosh u({ + d)

" (usinh ud — v cosh ud)sinh pd

S(w)

P(u) has simple poles at u = + k, +iu,,, +ipk,m=1,2,... and the first integral can be evaluated
using the method described by John together with some results from Section 2, to give

P j P o(du =4S (anK, — atK%) — AJo(kr)
0 m=1

The second integral can be evaluated using the method described in Appendix I to give

© 1 1 2 r
jo q(u)Jo(ur)dp = RIrT X+ g[v + 10g(;ﬁﬂ
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and the expression for G given by equation (8) follows.
John’s method can also be modified to produce a new series form for G. As u— oo, p(u)—
etz > {) so let us define p(x) by

pwy=e " p(p), P=|z—{|.

p(u) has the same singularity structure as p(u) and is bounded for all complex u provided we exclude
an e-neighbourhood of each pole. It can therefore be expressed in a form analogous to (A12) of
Reference 18.

- At A~ & Ay — B, 0(z,0)
= 2 4 m m+’m + , 10
Pl p—k u+k+ m; W+ g, 2 (10
where
A .
At =et¥— A, +iB, =a,c*"
i

The constant term £6(z, {) arises from a consideration of the asymptotic behaviour of p(x) which is
outlined in Appendix IIL
Note that letting u =0 in (10) we obtain the identity

A
5 ksmhkﬁ+ Z ;t-—sm,umﬂ—— (z,0)=0.

Following John’s method we find that in order to calculate G we need to evaluate the functions
M=*(B,r) and A, (B,7)
where

A (B, 1) = cos u,fp j Jo(ur)du — 8in 1,8 j Jolur)du. (11)

2+2

M*(B, r) have already been evaluated in Section 2 so that all that remains is the evaluation of
A, (B, 7). It is shown in Appendix IV that this can be written in a rather compact way as

A= [ SB[ g
b JOE+12) o/ (x> +77)

Gathering all these results together we find that
o 1
G= {7: M~ (B, r)+e M (B, ) +4 Y a,A B 1)+ SR 8z, 0). (12)
m=1

We note this result here mainly for use in Section 4 because the practical difficulties in evaluating
A, (B, r) make this form unsuitable for the calculation of G when r > 0.

4. FINITE DEPTH, r=0

Since K4(x) ~ —log(x/2) + 7 for small values of x, the series forms of the Green’s function given
by (3) and (8) cannot be used when r = 0. However, a series form can be derived from {8) by use
of the following argument.

Consider the series (8) and integral (2) forms for very small r, and z # {. Comparing these two
we see that

IEPJ F)Jo(ur)du=4 'Y (ame~a,ﬁK,t)+2[y+log<4d)]+ZG——AY0(kr).
0 m=1
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Using the fact that Y,(x) ~ (2/m)[log(x/2) + y], for small x, we find that for small r
2 2 1
I~—4 Z (a,log u,, —ak logum)+EG~—/—\~logk+dlog<2d)

+[v+log(%)]( 4 Z (A -a,,,)+~2——2w$>‘

Since it is clear from (2) that I is finite when r = 0, the coefficient of log (#/2) in this expression must
vanish and we find the identity

&, 1 A
R S Tl
L (an—an) =t
and that
1 2 2A
G= R R‘+EG 1og(2d)——»-10gk 4 Z (a, log u,, — aklog u¥). (13)

This formula for the Green’s function, although obtained here in a somewhat heuristic fashion,
can be derived in a more rigorous way by use of contour integration. The technique is to use
the expression (9) of the previous section and write

p(w) = [p(w) — g* (W] + q*(w) = P*(u) + ¢*(w),
where

w2
q* () = s(p) Gt d

PR = S+

p(p+dy
It follows that

o0

G———Pj P*(u)du+J q*(wdu=1; + 1.
0

0

I, can now be evaluated by considering the integral [ P*( — p) log udp where C is the contour
shown in Figure 2. I, can be evaluated using the method described in Appendix II.

w-plane

Figure 2. The contour used in the evaluation of I, in Section 4
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A second expression for G in the case r =0 can be obtained from equation (12). When r = 0,
equation (11) gives

Ay (B, 0) = cos p,, j

= €08 B gt B) — SIN W, B f (14 B)

where f,g and Ci are the auxiliary and cosine integral functions defined by Abramowitz and
Stegun.** In this case we find that

35060 (14)
This new result, although of interest, is generally rather inconvenient for the practical evaluation
of G owing to the extremely slow decay of the cosine integral function (Ci(x) ~ sin x/x for large
x). It would be nice if the procedure used in Section 3 could be applied here but we were unable
to find any expression for }:::1 cos mxtCi(mx) corresponding to (7). One can be
derived however and the derivation is given in Appendix V along with two identities for
infinite sums of cosine integral functions analogous to (7). Using the results of Appendix V
we find that

2
G= 113+R1—'_4m2 (a,,Ci — afCi*)}+— [El(kﬂ)—El(kﬁ)—i—ZG d[y—l-log(z[;)jl (15)

A o0
G =" [E\(kp)~Eilkp)] =4 3, anCilunf)+

where

= Ci(u,f), Ci* = Ci(uxp).
This result can also be obtained by writing, as before in this section, G =1, + I, and then
evaluating I, by a consideration of

211 o
j {S(—M)El(uﬁHM}du,
¢ p(u —d)

where C is the shown in Figure 2.
Further formulae of this type can be derived in a straightforward way by using the asymptotic
behaviour of Ci(x) to subtract closely related summable series from (14).

5. CONVERGENCE OF SERIES FOR FINITE DEPTH

In previous sections we have given a number of different expressions for the Green’s function.
Some ((3) and (14)) involve infinite series which are of the form Z:; , 4 F,, for some function F. We
have already commented on the possible difficulties associated with the convergence of these series
and we would hope to be able to accelerate this in some way. A second group of formulae ((8), (13)
and (15)) involve infinite series of the form Z (@, F,, — ayFy) and we would hope that these
forms would converge more rapidly, simply as they stand. This is indeed generally true since it is
straightforward to show that for ‘large’ m

um~u:ﬁ—ﬁv—
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and that

vat(oF, \* v
wtoatrz ()

F*
m : %
e - md % o sin wra, (16)

where a=|z— ] or z+{+ 2d.

In the three cases we have to consider the derivative term in this expression decays either at
the same rate as F,, or like F,/m, so that the dominant terms in this difference behave like
(FY/m)cos 8, whereas our original series decay as F}cos#,. We do therefore expect some,
though not perhaps spectacular, improvement in the convergence of these forms. It would be
very helpful if we could find explicit and easily evaluated closed forms for the sums suggested

by (16), e.g.

sin px0

o0
> Ko(pmr)
m=1
and to use the same subtraction trick again, but we have not been able to find such expressions.
There are, however, many other techniques for accelerating the convergence of infinite series
and we have investigated a number of them. One which seems quite effective and simple to
implement is described by Keifer and Weiss.'® Their method emphasizes the trigonometric content
of our series, rather than the comparison with a simpler series which we have used so far. They use a
simple transformation to write

m

o0 1 0
a mo.. T m+1 a ,
P [(pz)? — 2pzcosy + 1] [,,,; @)z + ‘]
where
Ay ~ Cup™ COS(MY + y,),
. - Cm+ 1
lim ¢, =0, lim-——=1
m-—> oo m-=> o0 Cm
and

T(ap) = Ap sy + PPy — 2pa,, COS Y.

The transformed series converges more rapidly than the original since T'(a,,) = o(a,,) as m — co.
Higher iterates of the transformation can be generated easily although care must be taken to
avoid problems with rounding errors especially near the singularity of the transformation, that
is when Argz >~y and p ~ 1. We have investigated up to three iterates of this method.

We have also investigated the use of three iterates of the Shanks transformation2® in its most
basic form and the well-known epsilon algorithm of Wynn.2! Several generalizations of the
methods described in References 19 and 20 were also applied but they were not found to be useful in
practice.

6. RESULTS

Infinite depth

We have calculated the Green’s function for infinite depth using equation (4) with the range of
values of v, §, r corresponding to the parameters X, Y used by Newman.!! We can confirm the
accuracy of the tabulated values of the function given by Newman!! up to the accuracy of our
work, i.e. about § decimal places. We have also compared the computing time needed for this
calculation with the time required for the straightforward evaluation of (1) using a singularity
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subtraction technique. The improvement is impressive and speed-up factors in the range 10-60
were obtained. The results did show the importance, from this point of view, of the availability of
efficient approximations to the special functions. The use of a recently published approximation for
the Struve function H(vr)*? was particularly beneficial.

Finite depth

In the case of finite depth we have calculated the Green’s function using all the methods
described above for a range of values of the parameters involved. More precisely we have taken
01 <w<09,0=z/d, {/d= —06,0<r/d <01 Some typical accurate values are given in Tables I
and II.

It should be remembered that in practice we would probably need to calculate the functions
several thousand times so that some compromise between accuracy and time must be made. For
large m, the mth terms in the infinite sums are of the form |e,| cos 8,, where &, 6,, are rather
complicated functions of m and the physical parameters involved. The determination of reliable
and efficient criteria for terminating the summations is a non-trivial matter since it is rather
difficult, efficiently, to control the contribution from the neglected terms, particularly when z ~{
and (r/d) is small. All the sums discussed in this paper have the same problem, however, so for

Table 1. Values of the Green’s function for finite depth.

100 x (o)

z 'C ] ¥

e 2 - 01 03 05 07 09

d d d

10 5 0 027907628 027441938 026570226 021008718 014465049
10 5 1 0-27504209 027036428 026159310 020589719 0-14041708
10 5 2 026417617 025943601 025050348 0-19456680 0-12895830
10 5 4 023295716 022797304 0-21840787 016153339 009545712
10 5 6 0-20225313 0-19688036 0-18630276 0-12794966 0-06124579
10 5 10 0-15708546 0-15059310 0-13707000 0-07459039 0-00697021
20 10 0 014443348 012848857 010365178 005974335 003672881
20 10 t 014391773 012796715 0-10311707 005920521 003621926
20 10 2 014241385 012644626 0-10155637 005763429 0-03473418
20 10 4 013697328 012093806 0-09588995 005192930 002937458
20 10 6 0-12950084 0-11335420 0-08804603 0-04402904 002205703
20 10 10 0-11333886 0-09684616 0-07073502 0-02660156 000654719
40 20 0 007722061 005282415 0-02853813 001714169 002171572
40 20 1 007715530 005275748 0-02847066 0-01708017 002165940
40 20 2 007696079 0052535882 0-02826961 0-01689691 002149324
40 20 4 007620302 005178454 0-02748580 001618433 0-02084855
40 20 6 0-07500738 0-05056148 002624719 001506459 0-01984087
40 20 10 007165474 0-04712190 002276043 001195963 001708602
60 30 0 005612584 002913317 001228919 001409134 001907264
60 30 1 005610593 002911280 001226985 001407451 0-01905433
60 30 2 005604638 0-02905182 001221194 0-01402408 001900438
60 30 4 005581093 002881068 001198310 001382510 001880672
60 30 6 005542795 002841826 001161121 001350289 001848634
60 30 10 005427536 002723564 0-01049479 0:01254456 001753224
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Table II. Values of the Green’s function for finite depth

100 x {w)

z 1 { i r

- = - 01 03 05 07 09

d d d

0 0 1 2:01947218 2-07369636 2-19236611 2-30672742 241667376

0 0 2 1-01805534 1-06079968 115563185 123187986 128633334

0 0 4 0-51663302 0-54772106 061738813 065084183 0-63845681

0 0 6 034912775 0-37324739 0-42703189 043141443 0-37093130

0 0 10 021472024 0-22978733 026140355 022223695 0-08986071
10 10 1 1-06175328 1405221243 103525000 0-98046298 093057487
10 10 2 0-56156251 0-55198522 0-53492859 0-48003429 043018074
10 10 4 0-31081984 0-30109861 028366963 0-22835571 0-17865628
10 10 6 0-22631643 0-21636142 0-19832701 0-14234632 0-09295728
10 10 10 0:15638160 0-14572425 0-12586708 0-06800241 0-02000885
20 20 1 103562655 1-01569065 098895108 0-95796052 095108355
20 20 2 0-53560098 0-51565536 0-48889746 0-45792229 045110563
20 20 4 028549937 026551498 023868416 0-20777126 0-20119567
20 20 6 020199900 0-18195045 0-15499943 0-12419281 0-11801851
20 20 10 0-13481649 0-11456620 0-08724155 005679516 0-05189983
40 40 1 1-02335033 099696357 097831970 097721863 098258920
40 40 2 0-52334550 0-49695678 0-47831502 047722425 048259753
40 40 4 0-27332620 0-24692965 0-22829634 022724677 023263069
40 40 6 0-18996078 0-16355123 0-14493211 014395111 0-14935240
40 40 10 012319216 009674129 0-07816837 0-07740598 0-08286009
60 60 1 102258902 099506671 0-98543648 099074050 099387588
60 60 2 0-52258433 0-49506168 0-48543483 0-49074093 0-49387539
60 60 4 027256562 0-24504155 0-23542825 0-24074270 0-24387331
60 60 6 0-18920119 016167477 0-15208407 0-15741236 0-16053652
60 60 10 0-12243571 0-09490185 0-08538349 0-09075564 0-09385903

comparison of these methods we have simply terminated the summation when |¢,,} < ¢ for a range
of values of &. Further work on this point is in progress and the results will be presented elsewhere.

It is obvious that the computing time involved in each method depends crucially both on the
efficient coding of the convergence acceleration techniques and of the algorithms for calculating
the special functions involved. In this work we have not attempted to optimize these aspects of the
calculation but have chosen, instead, to compare the various methods by simply counting the
number of ‘special’ function evaluations required in cach, ie. K, Ci, log.

Some typical results are shown in Tables Il and I'V together with data relating to the evaluation
of the Green’s function using equation (3). It can be seen that the new methods which we have
described in this paper are often very effective in improving the efficiency of these calculations. In
some cases there is little to choose between the various methods but the best method does seem to
be almost independent of desired accuracy. Generally speaking we have to work harder, i.e. use
more terms in higher iterates, as r decreases and w increases, but in most cases the new methods are
superior to the straightforward use of (3).

For modest accuracies equation (8) is a sound basis particularly at low frequencies but in general
the accelerated versions of (3) using the method of Keifer and Weiss!® work best whenr £ 0, z # {.
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Table ITIL. n, is the number of ‘special’ function calculations needed to determine the Green’s function
neglecting contributions of modulus less than ¢ using method Meth = M A. M = 1 refers to the use of equation
(3), M =3 refers to (15)and M = 4 to(13). 4 = K suggests the use of the convergence acceleration technique of
Keifer and Weiss,*® 4 = W implies Wynn’s epsilon algorithm.?! N, is the number of terms used with (3).

n, n,
100 x w w

z { r

yi H E Meth 01 03 05 07 09 N, o1 03 05 07 09 N,
10 5 0 3w 42 70 76 88 92 58 82 98 102 110

10 5 1 1K 36 40 48 48 49 239 54 56 58 58 58 308
10 5 2 1K 31 31 32 31 30 120 37 36 35 38 48 154
10 5 4 1K 25 25 24 23 22 60 28 28 28 30 29 78
10 5 6 1K 20 19 20 20 19 40 26 25 25 24 24 52
10 5 10 1K 14 14 14 14 14 24 18 18 18 18 16 31
20 10 0 3K/4K 32 42 52 54 54 50 54 62 94 100

20 10 1 1K 26 26 26 28 28 239 41 41 41 40 40 308
20 10 2 1K 22 22 21 26 26 120 30 31 32 32 32 154
20 10 4 1K 18 18 16 16 21 60 20 26 27 27 27 78
20 10 6 1K 15 15 15 15 16 40 19 19 18 23 23 52
20 10 10 1K 12 12 12 11 12 24 15 15 15 15 15 31
40 20 0 3W/4K 22 28 38 42 42 46 46 46 66 66

40 20 1 1K 16 16 16 21 21 239 24 24 26 27 31 308
40 20 2 1K 15 16 16 16 18 120 20 22 24 260 26 154
40 20 4 1K 13 14 15 15 15 60 17 17 21 21 21 78
40 20 6 1K 11 11 13 14 14 40 14 17 16 16 19 52
40 20 10 1K 10 11 10 12 12 24 12 11 14 15 15 31
60 30 0 3W/4K 18 28 30 32 34 30 34 36 38 46

60 30 1 1K 12 16 16 15 18 239 18 23 22 24 22 308
60 30 2 1K 12 14 14 15 15 120 18 20 19 19 22 154
60 30 4 1K 10 10 12 13 15 60 16 16 19 19 19 78
60 30 6 1K 10 10 12 12 13 40 16 16 14 15 15 52
60 30 10 1K 9 10 10 11 11 24 13 12 12 13 13 31

&= 0-00001 £ = (0-000001

Equation (8) is useful however when z = { and (r/d) is small. This is because the singularity of the
transformation of Reference 19 mentioned earlier reduces the effectiveness of the normal method
and (8), combined with the acceleration techniques which do not try to exploit the oscillatory
nature of the terms, i.e. References 20 and 21, becomes more effective.

For the case r = 0, the slow decay of the functions involved in (13), (14) and (15) means that we
must use more terms than for the case r > 0. It also proved impossible to use the acceleration
technique of Reference 19 with equations (14) and (15) since the relationship between the arguments
of the trigonometric and cosine integral functions means that we are again at a singularity of the
transformation. Various modifications of the method used to derive (14) were attempted in order to
avoid this problem but they did not prove to be helpful. For small |z — {}/d and small o, the best
approach seems to be the use of equation (15) with the epsilon algorithm?® but, as these two
quantities increase, equation (13) together with Reference 19 is more powerful.
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Table IV. n, is the number of ‘special’ function calculations needed to determine the Green’s function

neglecting contributions of modulus less than ¢ using method Meth = M A. M = 1 refers to the use of equation

(3), M = 2 refers to (8). A = K suggests the use of the convergence acceleration technique of Keifer and Weiss!®,

A = W implies Wynn’s epsilon algorithm,?! and 4 = S implies Shank’s transformation.?° N, is the number of
terms used with (3).

n, n,
100 x w w

z ¢ r

7 IEI 3 Meth 01 03 05 07 09 N, o1 03 05 07 09 N,

0 0 1 28 18 22 26 32 38 239 28 32 34 44 60 308

0 0 2 28 16 20 24 24 28 120 20 28 36 40 40 154

0 0 4 28 16 18 20 20 26 60 20 22 24 24 28 78

0 0 6 1S/W 14 14 14 16 16 40 18 18 18 20 20 52

0 0 10 1S/W 11 11 12 12 14 24 13 13 13 14 14 31
10 10 1 2/IW 38 54 82 88 90 239 70 96 96 104 110 308
10 10 2 2/iw 38 38 56 70 70 120 42 70 82 88 86 154
10 10 4 1K 30 32 30 28 29 60 32 31 36 38 38 78
10 10 6 1K 20 22 22 22 23 40 260 26 29 29 29 52
10 10 10 1K 14 14 15 15 15 24 18 18 18 20 20 31
20 20 1 2/1W 4 50 66 78 84 239 58 82 96 96 88 308
20 20 2 2/1W 34 44 54 52 50 120 38 56 60 60 66 154
20 20 4 1w 30 30 32 34 36 60 38 38 36 36 38 78
20 20 6 1w 22 24 26 28 25 40 280 28 30 27 30 52
20 20 10 1K 16 16 16 16 16 24 17 17 20 20 21 31
40 40 1 2W 32 46 50 62 62 239 50 66 74 90 86 308
40 40 2 2/1W 26 38 36 40 40 120 38 44 48 48 46 154
40 40 4 1w 22 28 28 30 26 60 30 32 32 36 34 78
40 40 6 1w 22 24 24 24 24 40 26 26 26 28 26 52
40 40 10 W 16 18 18 20 18 24 20 22 20 22 20 31
60 60 1 2W 30 44 58 58 66 239 46 64 74 90 96 308
60 60 2 1w 30 38 38 36 36 120 38 48 46 52 52 154
60 60 4 1w 280 28 30 28 26 60 32 32 32 32 34 78
60 60 6 1w 18 24 22 22 22 40 26 26 28 26 26 52
60 60 10 W 18 18 18 18 18 24 20 20 20 22 22 31

&= 000001 & = 0-000001

7. CONCLUSIONS

We have presented a number of alternative expressions for the Green’s functions in hydrodynamic
wave problems and some identities involving the cosine integral functions. In many cases the
calculation of Green’s functions can be considerably improved using these forms, particularly
when it is associated with one of the convergence acceleration techniques discussed.
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APPENDIX I

In this appendix we will outline a method of evaluation of jgo q(u)J o(ur)du which was needed in
Section 3. Using the result!’

= 1
.[o e~¢”o(ﬂ")dﬂ=m, ¢,r>0, 17
we can write
1 1 b .
ST |, ) e 20
T 0

Hence

S = 121 J‘: 2e 24 { [cosh pu(z — {) + cosh u(z + { + 2d)]J o(ur) — 2}dp

= 4J‘m i e~ 2" cosh p(z + d) cosh u({ + d)J o(ur) — 11du
]

2| -5 [cosh u(z + d)cosh u(C + d)J o(ur) — 11du
o sinh pd
and, after some manipulation, again using (17), we find

i+3—+ZG:J' (e"‘(z_g)+e""‘z+§+2d))J0(yr)+ZG
0

R R
© 2 2e7H
= = - dp.
L [(q(uHud)Jo(ur) sinhud] i

’ 11 o( e Jofur)
fo q()J o(urdp = R + R + X6+ 2J\0 (W — _W du
1 1 «© e"ﬂd e—zud
Rttt JO <wsinhud i ) P

hsz<Jo(ur)~e"2"“>du

d}o u )

jw 19(51)—}3:« dx =log(Qa), «>0,
0

® 1
\[ ( 1 B —.—#)e—xdx:v’
o \l—e™ x

the result given in Section 3 follows.

Thus

Now, using the results!’

APPENDIX I

In this appendix we will outline a method of evaluation of 58" g*(uwydp which was needed in
Section 4.
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Following the method of Appendix I with r =0 we have
" 1 1 © [/ e 1
*wdp=—+—+Zs+2 e e 1d
JO (Wdp =g+ 7 T o L (smh ud ,u(u+d)> #

1 1 os) e-ud e——Zud o0 1 e“Zud
4342 - -2 e A
“RTRTH Jo (Sinhud ud ) : J-o (u(u+d) pd )d“
and with the use of the result!”

© 1 dx o
T2 YT e
JO (1 + ox ¢ ) x v log(2>, x>0,

@ 11 2 1
FFdp=—=+-—+Z +—10g(——).
L R R 7974 "\ 242

we find that

APPENDIX III

In this appendix we will outline 2 method of calculation of the function é(z, {) defined in equation
{10) of Section 3.
It is easy to see by considering p{u) that lim p{u) = p(z, {) where

n- o

1 O0>z>2{>—-d
p(z,()={2 z=0or{=—d

4 z=0and (= —d.

Also,
. & Am_ mBm
lim p(e) =46(z ) + lim Y Hom—E
g oo oo m= 1 +
. . 0 NA* — H*B*
=30(z, ) + lim e Tmem
’ ( (:) u—r oo mzl N2+,ui
Now,
© pAk—prBi d
Zl H :2 +%’-”f- — Z {ulcos 2uk(z + d) + cos 2ui({ + d) + cos 2uf(z — () + 1]

2,42
— wk[sin 2uk(z + d) — sin 2u*({ + d) + sin 2uX(z — () ]}/(m +# d )

If we consider the results!’

® cosmy mcoshf{n—o) 1
= - 0<a<2m,
B TFET2 smhpr 2p 0SS

i msinme 7w sinh f(n — o)

=i mi+ % 2 sinhpn
=0, a=0 or 2=,

O0<a<2n,
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then
> COsma
li =0, 0 2x,
pljroloﬂmzlmz-l-ﬁz s
—~=g, «=0 or 2m,
X msin mo
li ez (),
,;Ln;mzlmz-kﬁz
Applying these results we find that
3, 0>z>(> —d,
1, O0=z>{>—d,
0>z>{=-d
0 % _ gk pPx 4
lim ZM: 0>z=(>—d,
poom=1 M+ =
2, z=(=0,
Z:C:—d’
z=0and {= —~d,

and comparing this result with the formula for p(z, {) we obtain the result

I, O0>z>({<—d,
2, 0=z>({>—d,
0z, )=42, O0>z>p=—d,
‘4, O=z>{=—d,
0, otherwise.

APPENDIX IV

In this appendix we will outline a method of simplification of the function A,,(8,r) defined in

equation (11).
If we define

1) = f“ pe ™ P J o (ur)dp

o K4
it is easy to show using (17) that

, J(B)E]mﬂw,

o MW Hul

a__ 1 +puid
dg \/r2+[)’2 Hom
dJ
- !

and hence that
dzs , 1
Rl T S
apz I e

This equation can be solved for J in a straightforward manner and used to give an expression for
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I. Now

Am(ﬁﬂ 7') = I cos ﬂmﬂ - MmJ sin Hmﬁ

— A, — ’ w, A constant
" Jo P+

and since'” A,(0,7) = Ko(i,1) = — Apt,y,

B cos p,x

* cos p,,xdx

, SO+

Am(ﬁ’ r) = KO(Aumr) - J‘

APPENDIX V

In this appendix we will give a derivation of expressions for some infinite sums of cosine integral
functions analogous to equation {7) which were used in Section 4.
Consider the behaviour of the expressions for G given by (13) and (14) as v— 0. In this case
k% ~v/d, so that E,(kB)~ Ei(kB) ~ — 2log (kf) + 7y, A ~ n/d. Hence, from (13)
1 1

G s 1 24 -1 k
D g Tyl d T Re T glosd) —loe

and from (14)
2 2 & o 02,0
—— e e Ay * *
G- dlog(kﬂ) 57 4";1 a*Ci*+ 5
These expressions are, of course, equal and comparing them we find that
& ‘ 1 1 ¢ 4(z,0)
—4 *Ci*= e~ ' ]
P AT TR d[l g( 2d )”}“ T =0 (18)
If we let { = —d and write z + d = fd, (18) gives
i3 & 1 1 1
- Z 1 e Tl
4 Z cos mnfCi(mnp) = ﬁ+2[y+ og(2 +212 2l+/3+2l~[3 7 (19)

and when f =1,

@ 1 1
- z (— "Ci(mn) = v+log() z; (21+1 Tl 7) (20)

If we note that

ax =§%[cos-’§£(z— 0+ M Lot 2d)]

and write z + { + 2d = ad, then combining (18) and (19) gives

& . 1 © 1 1
_2";1 cos mraCi{mn ) = —+y+10g< ) Z <2l+a —l—*—&——7>, O<a<2, 0<fB<l.
(21



CALCULATION OF GREEN’S FUNCTIONS 909

REFERENCES
1. C. A. Brebbia, The Boundary Element Method for Engineers, Pentech Press, London, 1978.
2. P. K. Banerjee and R. P. Shaw, Developments in Boundary Element Methods, Applied Science Publishers, 1982.
3. C. A. Brebbia et al., Boundary Elements: Proceedings of the Fifth International Conference, Hiroshima, Japan, Springer
Verlag, 1983.
4. C. J. Garrison in O. C. Zienkiewicz (ed.), Numerical Methods in Offshore Engneering, Wiley, 1978.
5. R. Eatock Taylor and J. Waite, International Journal for Numerical Methods in Engineering, 13, 73-92 (1978).
6. J. V. Wehausen and E. V. Laitone, Handbuch der Physik, 9, 446-778 (1960).
7. R. Eatock Taylor and J. Waite, Evaluation of the Singular Green’s Function for Hydrodynamic Analysis, Ocean

Engineering Group Report UCL OEG/78/1, University College, London, 1978.
8. W. D. Kim, Journal of Fluid Mechanics, 21, 427-451 (1965).
9. G. E. Hearn, Journal of Ship Research, 21, 89-93 (1977).
10. F. Noblesse, Journal of Engineering Mathematics, 16, 137-169 (1982).
11. J. N. Newman, Journal of Ship Research, 28, 151-154 (1984).
12. J. N. Newman, Applied Ocean Research, 6, 116-117 (1984).
13. J. Daubisse, Third International Conference of Numerical Ship Hydrodynamics, 1981.
14. M. Abramowitz and 1. Stegun, Handbook of Mathematical Functions, National Bureau of Standards Mathematics
Series, 55, Washington DC, 1964.
15. A. Erdélyi, Asymptotic Expansions, Dover, 1956.
16. C. J. Garrison and R. Berklite, Journal of The Engineering Mechanics Division, ASCE, 99-120 (1973).
17. L. S. Gradsteyn and I. W. Rijzhik, Tables of Integrals, Series and Products, Academic Press, 1965.
18. F. John, Communications on Pure and Applied Mathematics, 3, 45-101 (1950).
19. J. E. Keifer and G. H. Weiss, Computers and Mathematics with Applications, T, 527-535 (1981).
20. D. Shanks, Journal of Mathematics and Physics, 34, 1-42 (1955).
21. P. Wynn, Mathematics of Computation, 10, 91-96 (1956).
22. 1. N. Newman, Mathematics of Computation, 33, 551-556 (1984).





