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THE CALCULATION OF GREEN’S FUNCTIONS IN 
THREE DIMENSIONAL HYDRODYNAMIC GRAVITY 

WAVE PROBLEMS 

SUMMARY 
We have studied the problem of calculating Green’s functions in three dimensional hydrodynamic gravity 
wave problems. A number of new expressions for these functions are presented for both finite and infinite 
depths. Various techniques for accelerating the convergence of some infinite series in these expressions are 
investigated and compared with the normal methods of evaluation. A significant improvement in the 
efficiency of the calculation is found using the results described in this paper. 

KEY WORDS Green’s Functions Boundary Element Method Waves Special Functions Series 
Convergence Acceleration 

1. INTRODUCTION 

The problem of describing the motion of a body in the sea can be formulated in the language of 
potential theory. If we consider the sea to be an incompressible inviscid fluid with a free surface, the 
resulting problem involves the solution of Laplace’s equation subject to various body, sea floor and 
free surface boundary conditions. For most geometries it appears impossible to solve these 
equations analytically, and numerical methods must be used. One technique which has become 
popular recently is the boundary element method. It has been described extensively by other 
authors1-5 so we will not give details but just outline the essential features. 

By the use of Green’s third identity it can be shown that the potential defining the motion can be 
reproduced by a distribution of simple sources over the submerged surface of the body. The 
strengths of the sources can then be found by imposing the body boundary conditions and are 
given as the solution of a singular integral equation over the submerged body surface. The 
approximations are then made of (i) taking the submerged surface of the body to consist of a 
number ( n )  of simply shaped regions or facets and (ii) assuming that the source strength function 
has a simple form on each facet. This reduces the integral equation to a system of linear equations, 
the coefficients of which involve the Green’s function for the problem evaluated at a number (rn) of 
points on each facet. 

As more and more facets are introduced to improve the accuracy of the calculation, the number 
of Green’s functions which need to be determined grows rapidly ( - rn2n2) and it is found that this 
calculation takes an increasingly large proportion of the computing time. Some care is clearly 
needed in the practical evaluation of these functions in order that the investigation of more 
complex bodies is not prohibited by the time needed for their calculation. 

For a fluid of finite depth, d ,  the Green’s function which satisfies the linearized free surface, fluid 
bottom and radiation boundary conditions is given by Wehausen and Laitone6 in the form of 
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principal valued integrals or as infinite sums. Suppose (x, y, z), ( 5 ,  y, [) are the Cartesian co- 
ordinates of two points in the fluid where the origin of co-ordinates is taken on the free surface with 
the positive z direction pointing vertically upwards. If the waves on the free surface have frequency 
w then 

(i) Infinite depth: 

where 
B =  I z + i l ,  

r2  = (x - 5)’ + (y - y)’, 
R2 = r2 + ( z  - [)’, 

v = 02Jg. 

(ii) Finite depth: 

where 
R” = ( Z  + [ + 24’ + Y’, 

(p + v)e-’fid cosh p ( z  + d) cosh p([ + d) qp) = ~ __________ ~ _ _ _ _ - _ _ _ _  
( p  - v) - ( p  + v)e-’Gd 

27c(k2 - v’) cosh k(z + d)  cosh k ( [  + d) 
(k2 - v2)d + v 

A =  

v = k tanh kd. 

Alternatively 

where 
(3) 

and 
-v=pmtanpmd;  p m + l > p , > O ,  m = 1 , 2 ,  ... 

We will refer to (2) as the integral form and (3) as the series form. 
The integral forms (1) and (2) are often rather disappointing from a computational point of 

 vie^.^,*,^ This is mainly due to the singularity and oscillations in the integrand which makes it 
necessary to take quite a large number of points in the quadrature formulae used in the estimation 
of the integral. The evaluation thus becomes relatively rather slow-typically several times slower 
than the use of the series form-but the use of this form is apparently unavoidable for r = 0. Some 
approximate technique which avoids these problems would clearly be most useful. 

The infinite depth case (1) has, consequently, been studied by a number of authors, and our 
equation (4) in Section 2 has been derived in various ways by Kim,’  hear^^,^ Noblesse” and 
Newman.” Newman” has also given an interesting series expansion of (4) which is valid for any 
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values of r and ,8. Noblesse" has considered the infinite depth case at length and has derived a 
number of different finite integral, series and asymptotic expansions. These expressions prove to be 
useful for different parameter ranges (often for 'small' r,  p) but they could also provide clues to new 
ways of writing the Green's function in the finite depth case. Here, relatively little work seems to 
have been done, although D a u b i ~ s e ' ~  has reported some successful numerical calculations in 
which the integrand of (2) is approximated by a simple pole plus an exponential series. 

In many cases the use of the series form (3) represents a very efficient method for calculating the 
Green's function. Since p, -+ 00 as m -+ m, we find that a, -+ cos pm(z + d) cos p,([ + d)/d and 
hence the number of terms of the series which need to be calculated in order to achieve any given 
accuracy in (3) depends only on the decay of the modified Bessel function KO(pmr).  It can be shown 
that as m -+ a, ,urn -+p: = mn/d, so that if we regard K,(x) as negligible for x > 2, we need to 
calculate m, terms, whcre m, = Zd/nr.  For many values of ( r /d ) ,  m, is quite acceptable to modern 
computers, but if ( r /d )  is small, m, can become rather large. It would therefore be useful to find an 
expression for the infinite sum which converges more quickly for small (r/d).  

The results which we wish to present in this paper are organized as follows. In Section 2 we will 
give an improved integral form of the Green's function for infinite depth. In Section 3 we give a 
modification of the series form for r > 0 which converges more rapidly than (3) and in Section 4 we 
will derive three new expressions for the Green's function when r = 0 in the form of infinite series. 
Section 5 contains some discussion of the further acceleration of the series forms, and Section 6 
gives the results of some calculations using the various forms of the Green's function. 

2. THE INTEGRAL FORM-INFINITE DEPTH 

Let 

1 
__ + 2vM - (p, r )  

J(r2 + B 2 )  
where 

It is easy to show that 

and hence that, if r > 0 
0 eTvs 

- dx) 
J(x2 + r 2 )  ' 

where 
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Figure 1. The contour used in the evaluation of M'(0, r )  in Section 2 

In order to evaluate M'(0, r )  we consider 

where C is the contour shown in Figure 1 and Rc-+ co. 
It can be seen that 

where 
& + = 0 ,  & - = l  

and, hence, from Reference 14 that 
z 

Mf(O, r) = k - [Ho(vr) c Yo(vr)], 
2 

where H,(vr) is the Struve function of order zero. 
Gathering these results we find that for r > 0 

1 a evx z 
-Zve-vp{j o J ( x 2  ~- + r 2 )  dx + --[Ho(vr) 2 + Yo(vr)l 

J(r2 + P 2 )  1 A v ,  P, r )  = 

When r = 0 it is easy to see that M'(fl, 0) = k ekVaEi( T vp) and hence that 

1 
Im(v,  fl, 0) = - - 2ve-"aEi(vfl). 

P 
It should be noted that the integrals in these formulae involve neither a singular integrand 

nor a Bessel function and that they may usually be estimated extremely accurately and rapidly 
by the use of standard quadrature formulae with only a few points. 

It is of interest to examine some special cases of (4). First, as v + 0 we find that 

G-.-+ 
1 1 
R J ( r 2  + p2)' 
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Next. as v-+ co 

and, using an extension of the Laplace method for evaluating asymptotic expansions of integrals 
which is given by Erde1yi,l5 we find that as v -+ co 

1 1 
R J ( r 2  + p2))' 

G-+-- 

Both the forms (5) and (6) agree with the asymptotic results given by Garrison and Berklite.16 
Finally, we consider the case where r,  P -+ 0. That is, we consider the behaviour of the Green's 

function near a point source on thc free surface. Then 

where y is Euler's constant, i.e. 

Thus, for points on the free surface, the Green's function has a double (l/R)-type singularity and 
an additional logarithmic singularity. This result agrees with the observations of Newman." 

3. FINITE DEPTH, r > O  

One of the techniques which is sometimes employed to accelerate the convergence of an infinite 
series is to use the known closed form sum of a closely related series. Rather surprisingly this 
approach can be used in the case of (3) .  As m+ co 

1 
d 

a,K,-+-cos p;(z + d)cos p:(< + d)K,(p:r) 3 a:K: 

and z,l=sa:K: can be expressed in terms of elementary functions using a 
Reference 17, 

1 1 -f cos mxtK,(mx) = 
m =  1 

result given in 

- -.) 1 
In 

Applying this result we find, after some manipulation, that 
1 m 

G = 4 1 (amK, - + A[iJ,(kr) - Y,(kr)] + 
m = S  

where 
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It can be shown that for large m 

V 
amKm-a:K:--a*K* m mi  

so that this procedure should lead to a significant improvement in the convergence rate. We 
will discuss this point further in Section 5. The convergence of C, can also be considerably 
improved by noting that for 12 3 

mn 

where {A,] arc constants. The known values of 1; 1/1" for n 2 3,  can then be used to great 
advantage. 

This result can also be derived by modifying the method used by John." He noted that we can 
write 

where 
( p  cosh pz  + v sinh pz )  

P(P) = 2 cash P(i + d ) ( p  sinh pd - cash pd)' 

If we write 

where 

and 
2 cosh p ( i  + d)  cosh pz 

'(') = sinh pd , 

then we find that 

where 

and 
2v cosh p ( z  + d)  cosh p(( + d )  

= (p  sinh pd - v cosh pd) sinh pd  ' 

P(p)  has simple poles at p = i: k,  rt ipmi f ip;, m = 1,2,. . . and the first integral can be evaluated 
using the method described by John together with some results from Section 2, to give 

00 

P j; fYP)JO(P)dP = 4 ( a m K m  - a : K 3  - AJO(k4 
m =  1 

The second integral can be evaluated using the method described in Appendix I to give 
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and the expression for G given by equation (8) follows. 

ep(ci-Z)(z > (‘) so let us define p(p)  by 
John’s method can also be modified to produce a new series form for G. As p-+ 00, p(p)-+ 

P(P) = e-”Bp”(p), P = Iz - [I. 
p(p) has the same singularity structure as p(p)  and is bounded for all complex p provided we exclude 
an E-neighbourhood of each pole. It can therefore be expressed in a form analogous to (A12) of 
Reference 18. 

where 

The constant term +S(z, [) arises from a consideration of the asymptotic behaviour of @(p) which is 
outlined in Appendix 111. 

Note that letting p = 0 in (10) we obtain the identity 
m A a m  

2nk m = l  p m  
sinh kj? + - sin pmP - gS(z ,  [) = 0. 

Following John’s method we find that in order to calculate G we need to evaluate the functions 
M c  (P, 4 and AAP, r )  
where 

M”(j?, r) have already been evaluated in Section 2 so that all that remains is the evaluation of 
Am(j?, r). It is shown in Appendix IV that this can be written in a rather compact way as 

Gathering all these results together we find that 

1 m A 
G = --- (ekPM-(j?, r )  + e-kPA4+(fl, r ) )  + 4 c amAm(P, r )  + ---6(z, {) 

n m =  1 2R 

We note this result here mainly for use in Section 4 because the practical difficulties in evaluating 
Am@, r )  make this form unsuitable for the calculation of G when r > 0. 

4. FINITE DEPTH, r = 0 

Since K,(x) - - log(x/2) + y for small values of x, the series forms of the Green’s function given 
by (3) and (8) cannot be used when r = 0. However, a series form can be derived from (8) by use 
of the following argument. 

Consider the series (8) and integral (2) forms for very small r, and z # (‘. Comparing these two 
we see that 
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Using the fact that Y,(x) - ( 2 / 4  [log(x/2) + y], for small x, we find that for small Y 

W 2A 
m = l  7t 

I - -  4 z: (a,  log pm - a: log p:) + c, - -1ogk 

Since it is clear from (2) that I is finite when r = 0, the coeficient of log (r/2) in this expression must 
vanish and we find the identity 

1 A  
2d 2n 

m 1 (a,  - a;) - - + -- = 0 
m =  1 

and that 
3c1 1 1  2 2A 

G = - + -- + C, - - log(2d) - -log k - 4 C ( a ,  log p, - log p;). R R '  d 7t m= 1 

This formula for the Green's function, although obtained here in a somewhat heuristic fashion, 
can be derived in a more rigorous way by use of contour integration. The technique is to use 
the expression (9) of the previous section and write 

where 

2 
P*(p) = S ( p )  + ____- 

Pcl(P + 4' 
It follows that 

G = P*(p)dp + Irn g*(p)dp = I ,  + 1,. 
0 

I ,  can now be evaluated by considering the integral JcP*( - p )  log pdp where C is the contour 
shown in Figure 2. I ,  can be evaluated using the method described in Appendix 11. 

I 
Figure 2. The contour used in the evaluation of I ,  in Section 4 
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A second expression for G in the case r = 0 can be obtained from equation (12). When r = 0, 
equation (1 1) gives 

= cos P m b d P m b )  - sin ClaP.f(Pmb) 

= - Ci(Clm@), 

where f, g and Ci are the auxiliary and cosine integral functions defined by Abramowitz and 
Stegun.14 In this case we find that 

This new result, although of interest, is generally rather inconvenient for the practical evaluation 
of G owing to the extremely slow decay of the cosine integral function (Ci(x) - sin x/x for large 
x). It would be nice if the procedure used in Section 3 could be applied here but we were unable 
to find any expression for I,"=, cosmxtCi(mx) corresponding to (7). One can be 
derived however and the derivation is given in Appendix V along with two identities for 
infinite sums of cosine integral functions analogous to (7). Using the results of Appendix V 
we find that 

A 
71 

where 

Ci = Ci(pm/?), Ci* 5 Ci(p2P). 
This result can also be obtained by writing, as before in this section, G = I ,  + I, and then 

evaluating I ,  by a consideration of 

where C is the shown in Figure 2. 

behaviour of Ci(x) to subtract closely related summable series from (14). 
Further formulae of this type can be derived in a straightforward way by using the asymptotic 

5. CONVERGENCE O F  SERIES FOR FINITE DEPTH 

In previous sections we have given a number of different expressions for the Green's function. 
Some ((3) and (1 4)) involve infinite series which are of the form c,"= amFm for some function F.  We 
have already commented on the possible difficulties associated with the convergence of these series 
and we would hope to be able to accelerate this in some way. A second group of formulae ((8), (13) 
and (15)) involve infinite series of the form I,"= I (amFm - a:F:) and we would hope that these 
forms would converge more rapidly, simply as they stand. This is indeed generally true since it is 
straightforward to show that for 'large' in 

V 

m71 
Clm - Cl: - - 
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and that 

vaz dFm * vF; 
mrc 0 8pm 2md a 

amFm - a z F z  - -- ~ + ~ C a sin @;a, 

where cl=/z--[/ o r z + [ + 2 d .  
In the three cases we have to consider the derivative term in this expression decays either at 

the same rate as F ,  or like Fm/m, so that the dominant terms in this difference behave like 
(Fz/m) cos dm whereas our original series decay as F z  cos 8,. We do therefore expect some, 
though not perhaps spectacular, improvement in the convergence of these forms. It would be 
very helpful if we could find explicit and easily evaluated closed forms for the sums suggested 
by (161, e.g. 

and to use the same subtraction trick again, but we have not been able to find such expressions. 
There are, however, many other techniques for accelerating the convergence of infinite series 

and we have investigated a number of them, One which seems quite effective and simple to 
implement is described by Keifer and Weiss.' Their method emphasizes the trigonometric content 
of our series, rather than the comparison with a simpler series which we have used so far. They use a 
simple transformation to write 

where 

C m + 1  lim em = 0, lim _____ - - 1  
m-m m - r m  C m  

and 
T(am) = am+ + p2um- - 2pam cos $. 

The transformed series converges more rapidly than the original since T(am) = o(am) as m -P a. 
Higher iterates of the transformation can be generated easily although care must be taken to 
avoid problems with rounding errors especially near the singularity of the transformation, that 
is when Argz = $ and p 2i 1. We have investigated up to three iterates of this method. 

We have also investigated the use of three iterates of the Shanks transformation20 in its most 
basic form and the well-known epsilon algorithm of Wynn21 Several generalizations of the 
methods described in References 19 and 20 were also applied but they were not found to be useful in 
practice. 

6. RESULTS 

Infinite depth 

We have calculated the Green's function for infinite depth using equation (4) with the range of 
values of v, 8, r corresponding to the parameters X ,  Y used by Newman." We can confirm the 
accuracy of the tabulated values of the function given by Newman" up to the accuracy of our 
work, i.e. about 8 decimal places. We have also compared the computing time needed for this 
calculation with the time required for the straightforward evaluation of (1) using a singularity 
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subtraction technique. The improvement is impressive and speed-up factors in the range 10-60 
were obtained. The results did show the importance, from this point of view, of the availability of 
efficient approximations to the special functions. The use of a recently published approximation for 
the Struve function H , ( v ~ ) ~ ~  was particularly beneficial. 

Finite depth 

In the case of finite depth we have calculated the Green’s function using all the methods 
described above for a range of values of the parameters involved. More precisely we have taken 
0.1 d o d 0.9,O 3 zld, [ Id 3 - 0.6,0 d rld 6 0.1. Some typical accurate values are given in Tables I 
and 11. 

It should be remembered that in practice we would probably need to calculate the functions 
several thousand times so that some compromise between accuracy and time must be made. For 
large m, the mth terms in the infinite sums are of the form / e rn /  cos 8, where E,, 8, are rather 
complicated functions of m and the physical parameters involved. The determination of reliable 
and efficient criteria for terminating the summations is a non-trivial matter since it is rather 
difficult, efficiently, to control the contribution from the neglected terms, particularly when z N ( 
and (rid) is small. All the sums discussed in this paper have the same problem, however, so for 

Table I. Values of the Green’s function for finite depth. 

100 x (4 
0.3 0.5 0.7 0.9 

10 
10 
10 
10 
10 
10 
20 
20 
20 
20 
20 
20 
40 
40 
40 
40 
40 
40 
60 
60 
60 
60 
60 
60 

5 0 
5 1 
5 2 
5 4 
5 6 
5 10 

10 0 
10 1 
10 2 
10 4 
10 6 
10 10 
20 0 
20 1 
20 2 
20 4 
20 6 
20 10 
30 0 
30 1 
30 2 
30 4 
30 6 
30 10 

0.27907628 
0.27504209 
0.264 176 17 
0.232957 16 
0.202253 13 
0.1 5708546 
0.14443348 
0.1439 1773 
0.14241385 
0.13697328 
0.12950084 
0.11333886 
0.07722061 
0.0771 5530 
0.07696079 
0.07620302 
0.07500738 
0.07165474 
0.056 12584 
0.05610593 
0.05604638 
0.05581093 
0.05542795 
0.05427536 

0.27441938 
0,27036428 
0.25943601 
0.22797304 
0.19688036 
0.1 50593 10 
012848857 
0.127967 15 
0 12644626 
012093806 
011335420 
009684616 
0.05282415 
005275748 
0’05255882 
0.05 178454 
005056148 
004712190 
0029 133 17 
0.0291 1280 
0.02905 182 
0.0288 1068 
0,02841826 
0.02723564 

0.26570226 
0.261593 10 
0.25050348 
0.21840787 
0.18630276 
0.13707000 
0.10365 178 
0.10311707 
0.10155637 
0.09588995 
0.08804603 
0.07073502 
0.02853813 
0.02847066 
0.0282696 1 
0.02748580 
0.02624719 
0.02276043 
0.01 2289 19 
0.01 226985 
0.01 22 1 194 
0~01198310 
0~01161121 
0.01049479 

0.2 10087 18 
0.2058971 9 
0,19456680 
0.16153339 
0.12794966 
0.07459039 
0.05974335 
0.05920521 
0.05763429 
0.05192930 
0.04402904 
0.02660156 
0.01 7 14169 
0.0 1 7080 17 
0.01689691 
00161 8433 
0.01506459 
0.01 195963 
0.0 1409 1 34 
001407451 
001402408 
0.01382510 
0.01350289 
001254456 

0.14465049 
0.1404 1708 
012895830 
0.09545712 
0.06 124579 
0.00697021 
003672881 
0.03621926 
003473418 
0.0293 7458 
0.02205703 
0.006547 19 
0.021 71 572 
002165940 
0.02149324 
0.02084855 
0.0 1984087 
0.01 708602 
0.0 1907264 
0.0 1905433 
0.0 1 90043 8 
0.01 880672 
0.01848634 
0.0 1 75 3 224 
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Table IT. Values of the Green’s function for finite depth 

100 x 

0 
0 
0 
0 
0 

10 
10 
10 
10 
10 
20 
20 
20 
20 
20 
40 
40 
40 
40 
40 
60 
60 
60 
60 
60 

0 1 
0 2 
0 4 
0 6 
0 10 

10 1 
10 2 
10 4 
10 6 
10 10 
20 1 
20 2 
20 4 
20 6 
20 10 
40 1 
40 2 
40 4 
40 6 
40 10 
60 1 
60 2 
60 4 
60 6 
60 10 

0.1 0.3 

2.019472 18 
1.01805534 
0.51663302 
0.34912775 
0.2 1472024 
1.061 75328 
0561 56251 
0.31081 984 
0.2263 1643 
015638160 
1.03562655 
053 560098 
0.28549937 
0.201 99900 
0.13481649 
1.02335033 
0.52334550 
0.27332620 
0.1 8996078 
0.1 23 19216 
1.02258902 
0.52258433 
0.27256562 
0.189201 19 
0.12243571 

2.07369636 
1,06079968 
054772 106 
0.37324739 
0.22978733 
1.05221243 
0.55198522 
0.30 10986 1 
0.21 636 142 
0.14572425 
1,01569065 
0.5 1565536 
02655 1498 
0.1 8 195045 
0 11456620 
0.99696357 
0.49695678 
0.24692965 
0.1 6355 123 
0.09674 129 
0.9950667 1 
0.49506 168 
0.24504155 
0.1 61 67477 
0.094901 85 

0.7 0.9 

2.1923661 1 
1.15563185 
0.6 17388 13 
0.42703 189 
0.26140355 
1.03525000 
0.53492859 
0.28366963 
0.1983270 1 
0.12586708 
0.98895108 
0.48889746 
0.23868416 
0.15499943 
0.087241 55 
0.9783 1970 
0.4783 1502 
0.22829634 
0.1 44932 1 1 
0.07816837 
0.98543648 
0.48543483 
0.23542825 
0.1 5208407 
0.08538349 

2.30672742 
1.23 187986 
0.650841 83 
0.43 141443 
0.22223695 
0.98046298 
0.48003429 
0.22835571 
0.14234632 
0.06800241 
0.95796052 
0.45792229 
0.20777 126 
0.12419281 
0.05679516 
0.97721 863 
0.47722425 
0.22724677 
0143951 11 
0.07740598 
0.99074050 
0.49074093 
0.24074270 
0.15741236 
0,0907 5 5 64 

2.41667376 
1.28633334 
0.63845681 
0.37093 130 
0.0898607 1 
0.93057487 
0.43018074 
0.17865628 
009295728 
0.020008 8 5 
0.95108355 
0.451 10563 
0.201 19567 
0.1 1801851 
005189983 
0.98258920 
0.482597 5 3 
0.23263069 
0.1 4935240 
0.08286009 
0.99387588 
0.49387539 
0.243 873 3 1 
0.1 6053652 
0.09385903 

comparison of these methods we have simply terminated the summation when lernl< c for a range 
of values of e. Further work on this point is in progress and the results will be presented elsewhere. 

It is obvious that the computing time involved in each method depends crucially both on the 
efficient coding of the convergence acceleration techniques and of the algorithms for calculating 
the special functions involved. In this work we have not attempted to optimize these aspects of the 
calculation but have chosen, instead, to compare the various methods by simply counting the 
number of ‘special’ function evaluations required in each, i.e. K O ,  Ci, log. 

Some typical results are shown in Tables 111 and IV together with data relating to the evaluation 
of the Green’s function using equation (3). It can be seen that the new methods which we have 
described in this paper are often very effective in improving the efficiency of these calculations. In 
some cases there is little to choose between the various methods but the best method does seem to 
be almost independent of desired accuracy. Generally speaking we have to work harder, i.e. use 
more terms in higher iterates, as r decreases and w increases, but in most cases the new methods are 
superior to the straightforward usc of (3). 

For modest accuracies equation (8) is a sound basis particularly at low frequencies but in general 
the accelerated versions of (3) using the method of Keifer and Weiss19 work best when r # 0, z # [. 
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Table 111. n, is the number of ‘special’ function calculations needed to determine the Green’s function 
neglecting contributions ofmodulus less than E using method Meth = M A .  M = 1 refers to the use of equation 
(3), M = 3 refers to (15) and M = 4 to (13). A = I( suggests the use of the convergence acceleration technique of 
Keifer and Weiss,19 A = W implies Wynn’s epsilon algorithm.z1 N ,  is the number of terms used with (3). 

100 x 
n, 
w 

ne 
w 

- Meth 0.1 0.3 0.5 0.7 0.9 N ,  0.1 0.3 0.5 0.7 0.9 N ,  Jfl is1 1; 
10 
to 
10 
10 
10 
10 
20 
20 
20 
20 
20 
20 
40 
40 
40 
40 
40 
40 
60 
60 
60 
60 
60 
60 
__ 

5 0  
5 1  
5 2  
5 4  
5 6  
5 10 

10 0 
10 1 
10 2 
10 4 
10 6 
10 to 
20 0 
20 1 
20 2 
20 4 
20 6 
20 10 
30 0 
30 1 
30 2 
30 4 
30 6 
30 10 

3 w  
1K 
1K 
1K 
1K 
1K 

3K/4K 
1K 
1K 
1K 
1K 
1K 

3 W/4K 
1K 
1K 
1K 
1K 
IK 

3W/4K 
1K 
1K 
tK 
1K 
1K 

42 70 76 88 92 
36 40 48 48 49 
31 31 32 31 30 
25 25 24 23 22 
20 19 20 20 19 
14 14 14 14 14 
32 42 52 54 54 
26 26 26 28 28 
22 22 21 26 26 
18 18 16 16 21 
15 15 15 15 16 
12 12 12 11 12 
22 28 38 42 42 
16 16 16 21 21 
15 16 16 16 18 
13 14 15 15 15 
11 11 13 14 14 
10 11 10 12 12 
18 28 30 32 34 
12 16 16 15 18 
12 14 14 15 15 
10 10 12 13 15 
10 10 12 12 13 
9 10 10 1 1  11 

239 
120 
60 
40 
24 

239 
120 
60 
40 
24 

239 
120 
60 
40 
24 

239 
120 
60 
40 
24 

58 82 98 
54 56 58 
37 36 35 
28 28 28 
26 25 25 
18 18 18 
50 54 62 
41 41 41 
30 31 32 
20 26 27 
19 19 18 
15 15 15 
46 46 46 
24 24 26 
20 22 24 
17 17 21 
14 17 16 
12 11 14 
30 34 36 
18 23 22 
18 20 19 
16 16 19 
16 16 14 
13 12 12 

102 110 
58 58 308 
38 48 154 
30 29 78 
24 24 52 
18 16 31 
94 100 
40 40 308 
32 32 154 
27 27 78 
23 23 52 
15 15 31 
66 66 
27 31 308 
26 26 154 
21 21 78 
16 19 52 
15 15 31 
38 46 
24 22 308 
19 22 154 
19 19 78 
15 15 52 
13 13 31 

E = 0~00001 

Equation (8) is useful however when z = [ and ( r /d)  is small. This is because the singularity of the 
transformation of Reference 19 mentioned earlier reduces the effectiveness of the normal method 
and (8), combined with the acceleration techniques which do not try to exploit the oscillatory 
nature of the terms, i.e. References 20 and 21, becomes more effective. 

For the case r = 0, the slow decay of the functions involved in (1 3), (14) and (15) means that we 
must use more terms than for the case r > 0. It also proved impossible to use the acceleration 
technique of Reference 19 with equations (14) and (15) since the relationship between the arguments 
of the trigonometric and cosine integral functions means that we are again at a singularity of the 
transformation. Various modifications of the method used to derive (14) were attempted in order to 
avoid this problem but they did not prove to be helpful. For small Iz - ( / / d  and small o, the best 
approach seems to be the use of equation (15) with the epsilon algorithmz1 but, as these two 
quantities increase, equation (13) together with Reference 19 is more powerful. 
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Table IV. n, is the number of ‘special’ function calculations needed to determine the Green’s function 
neglecting contributions of modulus less than E using method Meth = M A .  M = 1 refers to the use of equation 
(3), M = 2 refers to (8). A = K suggests the use ofthe convergence acceleration technique of Keifer and Weiss”, 
A = W implies Wynn’s epsilon algorithm,” and A = S implies Shank‘s transformation.20 N ,  is the number of 

terms used with (3). 

100 x 
ne 

w 

r 
- Meth 0 1  0.3 0.5 0.7 0.9 N ,  0.1 0.3 0.5 0.7 0.9 N ,  

0 
0 
0 
0 
0 

10 
10 
10 
10 
10 
20 
20 
20 
20 
20 
40 
40 
40 
40 
40 
60 
60 
60 
60 
60 

0 1  
0 2  
0 4  
0 6  
0 10 

10 1 
10 2 
10 4 
10 6 
10 10 
20 1 
20 2 
20 4 
20 6 
20 10 
40 1 
40 2 
40 4 
40 6 
40 10 
60 1 
60 2 
60 4 
60 6 
60 10 

2s 
2s 
2s  

1 s/w 
1 s/w 
2/1w 
2jlW 

1K 
1K 
1K 

2/1w 
2/1w 
1 w  
1 w  
1K 
2 w  

1W 
1 w  
IW 
2 w  
1 w  
1 w  
1 w  
1 w  

2/1w 

18 22 26 32 38 
16 20 24 24 28 
16 18 20 20 26 
14 14 14 16 16 
11 11 12 12 14 
38 54 82 88 90 
38 38 56 70 70 
30 32 30 28 29 
20 22 22 22 23 
14 14 15 15 15 
44 50 66 78 84 
34 44 54 52 50 
30 30 32 34 36 
22 24 26 28 25 
16 16 16 16 16 
32 46 50 62 62 
26 38 36 40 40 
22 28 28 30 26 
22 24 24 24 24 
16 18 18 20 18 
30 44 58 58 66 
30 38 38 36 36 
28 28 30 28 26 
18 24 22 22 22 
18 18 18 18 18 

239 
120 
60 
40 
24 

239 
120 
60 
40 
24 

239 
120 
60 
40 
24 

239 
120 
60 
40 
24 

239 
120 
60 
40 
24 

28 32 34 
20 28 36 
20 22 24 
18 18 18 
13 13 13 
70 96 96 
42 70 82 
32 31 36 
26 26 29 
18 18 18 
58 82 96 
38 56 60 
38 38 36 
28 28 30 
17 17 20 
50 66 74 
38 44 48 
30 32 32 
26 26 26 
20 22 20 
46 64 74 
38 48 46 
32 32 32 
26 26 28 
20 20 20 

44 60 308 
40 40 154 
24 28 78 
20 20 52 
14 14 31 

104 110 308 
88 86 154 
38 38 78 
29 29 52 
20 20 31 
96 88 308 
60 66 154 
36 38 78 
27 30 52 
20 21 31 
90 86 308 
48 46 154 
36 34 78 
28 26 52 
22 20 31 
90 96 308 
52 52 154 
32 34 78 
26 26 52 
22 22 31 

& = 0~00001 & = 0~00000 1 

7. CONCLUSIONS 

We have presented a number of alternative expressions for the Green’s functions in hydrodynamic 
wave problems and some identities involving the cosine integral functions. In many cases the 
calculation of Green’s functions can be considerably improved using these forms, particularly 
when it is associated with one of the convergence acceleration techniques discussed. 

ACKNOWLEDGEMENTS 

I would like to thank Dr R. Eatock Taylor and Dr J. Waite for a number of useful conversations 
and the Marine Technology Centre at University College, London, where some of this work was 
begun. 



CALCULATION O F  GREENS FUNCTIONS 905 

APPENDIX I 

In this appendix we will outline a method of evaluation off: q(p)Jo(pr)dp which was needed in 
Section 3. Using the 

we can write 

C G  = f Im 2e-’ldP( [cosh p(z - i) + coshp(z + 5 + 2 d ) ] J 0 ( p r )  - 2)dp 
1=1 0 

= 4 S m  f e-2*dd”[cosh p(z + d)coshp(( + d)J,(pr)  - l l dp  
0 1 = 1  

[cosh p ( z  + d) cosh p(5 + d)J,(pr) - 1 Jdp 
sinhpd 

and, after some manipulation, again using (1  7), we find 

Thus 

Now, using the resultsx7 

j; .Iu(x), e-@X dx = log (2~t), > 0, 

the result given in Section 3 follows. 

APPENDIX I1 

In this appendix we will outline a method of evaluation of f:q*(p)dp which was needed in 
Section 4. 
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Following the method of Appendix I with r = 0 we have 

and with the use of the result” 

we find that 

APPENDIX 111 

In this appendix we will outline a method of calculation of the function 6(z, [) defined in equation 
(10) of Section 3 .  

It is easy to see by considering p ( p )  that lim p ( p )  = p ( z ,  C) where 
P+m 

1 O > z > ( > - d  
2 z = O o r i =  - d  
4 z=Oand  i= -d .  

Also. 

m sin ma z sinh O(7c - a) 
m = l  m2+f12  - 2  sinhpz ’ 

= 0, 

0 < a < 2z, 

CI = 0 or 2z, 

2 ~- -_--.____.-___ 



CALCULATION O F  GREENS FUNCTIONS 907 

then 

7t 
-7, a = O o r 2 n ,  
i 

lim 2 msinmol = 0. 
p - m m = t  m2+P2 

Applying these results we find that 

4, O > z > [ > - d ,  
1, O = z > [ > - d ,  

z = [ =  -d ,  
z=O and [ =  -d, 

and comparing this result with the formula for p(z, [) we obtain the result 

1, O > z > [ < - d ,  
2, O = z > [ > - d ,  

4, O = z > [ = - d ,  
0, otherwise. 

6 (~ , [ )=  I 2, O > Z > P =  -d ,  

I 
APPENDIX IV 

In this appendix we will outline a method of simplification of the function Am(/3,r) defined in 
equation ( 1  1). 

If we define 

it is easy to show using (17) that 

and hence that 

This equation can be solved for J in a straightforward manner and used to give an expression for 
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I .  Now 
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cos pmxdx 
A constant s 0 J ( r2  + x2)’ 

= - Apm - 

and sinceI7 dm(O, r )  = KO(pClmr) = - Apm 

cos pmxdx 
J( r2  + x’))’ 

APPENDIX V 

In this appendix we will give a derivation of expressions for some infinite sums of cosine integral 
functions analogous to equation (7) which were used in Section 4. 

Consider the behaviour of the expressions for G given by (13) and (14) as v +O, In this case 
k2 - v/d,  so that E,(kP) - Ei(kp) N - 2log(kp) + y, A - nld. Hence, from (13) 

1 1 2 2 
d d 

+ E G  - - log(2d) - - log k G+- + 
z - i  z + i + 2 d  

and from (14) 

G +  --log(kp)--y-4 2 2 f &Ci*+-. +7 i) 
2P d d m = l  

These expressions are, of course, equal and comparing them we find that 

If we let < = - d and write z + d = Pd, (18) gives 

and when /3 = 1, 

If we note that 

cos m z  
CI 

and write z + i + 2d = ad, then combining (18) and (19) gives 

1 m 

- 2  O<a<2, O < P < l .  
m= 1 CI 
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